Search results for "channel selection"
showing 2 items of 2 documents
One-Dimensional Convolutional Neural Networks Combined with Channel Selection Strategy for Seizure Prediction Using Long-Term Intracranial EEG
2022
Seizure prediction using intracranial electroencephalogram (iEEG) has attracted an increasing attention during recent years. iEEG signals are commonly recorded in the form of multiple channels. Many previous studies generally used the iEEG signals of all channels to predict seizures, ignoring the consideration of channel selection. In this study, a method of one-dimensional convolutional neural networks (1D-CNN) combined with channel selection strategy was proposed for seizure prediction. First, we used 30-s sliding windows to segment the raw iEEG signals. Then, the 30-s iEEG segments, which were in three channel forms (single channel, channels only from seizure onset or free zone and all c…
Seizure Prediction Using EEG Channel Selection Method
2022
Seizure prediction using intracranial electroencephalogram (iEEG) is still challenging because of complicated signals in spatial and time domains. Feature selection in the spatial domain (i.e., channel selection) has been largely ignored in this field. Hence, in this paper, a novel approach of iEEG channel selection strategy combined with one-dimensional convolutional neural networks (1D-CNN) was presented for seizure prediction. First, 15-sec and 30-sec iEEG segments with an increasing number of channels (from one channel to all channels) were sequentially fed into 1D-CNN models for training and testing. Then, the channel case with the best classification rate was selected for each partici…